Design Patterns Cheat Sheet

Creational Patterns
Abstract Factory

Provides an interface for creating families of related or dependent objects without
specifying their concrete classes

AbstractFactory ConcreteFactory
+CreateProductA() [+CreateProductA() ["1
+CreateProductB() +CreateProductB() !

ProductA |<- - e

AbstractProduct H

ProductB |<- -
Builder

Separates the construction of a complex object from its representation so that the
same construction process can create different representations.

Director Builder
+Construct() +BuildPart()
Product builds ConcreteBuilder
+BuildPart()

Factory Method

Defines an interface for creating an object but let subclasses decide which class to
instantiate

Product Creator
+FactoryMethod()
ConcreteProduct creates ConcreteCreator
+FactoryMethod()
Prototype

Specifies the kinds of objects to create using a prototypical instance and create new
objects by copying this prototype

ConcretePrototypel
Prototype el
Client +Cl
i) ConcretePrototype2
+Clone()
Singleton

Ensure a class only has one instance and provide a global point of access to it

Singleton

-instance

-Singleton()
+Getlnstance()

Structural Patterns

Adapter
- ___|

Converts the interface of a class into another interface clients expect

Target
Client
+Request()
Adapter Adaptee
+Request() +SpecificRequest()

Structural Patterns (cont’d)
Bridge
|

Decouples an abstraction from its implementation so that the two can vary
independently

Abstraction

Client -
+Operation()
Q ConcretelmplementorA
N -
G Operationimpl()

+Operationimpl() ConcretelmplementorB

+Operationimpl()

Composite

Composes objects into tree structures to represent part-whole hierarchies

’—<> Composite
+Operation()
Component +Add(component)
- +Remove(component)
- +Operation() +GetChild(index)
+Add(component)
+Remove(component)
+GetChild(index) Leaf
+Operation()
Decorator
Attaches additional responsibilities to an object dynamically
ConcreteComponent
Component +Operation()
+Operation() DEsaEEr ConcreteDecorator
~ ; +Operation()
e +AddedBehavior()

Facade

Provides a unified interface to a set of interfaces in a subsystem

A 4 + Y
| | | |

Subsystem

Flyweight

Uses sharing to support large numbers of fine-grained objects efficiently

FlyweightFactory
i Client
+GetFlyweight(key)
UnsharedFlyweight
Flyweight +Operation(state)
+Operation(state) Flyweight
+Operation(state)

Proxy
|

Provides a surrogate or placeholder for another object to control access to it

Proxy
+Request()
I Subject \I/
Client
I +Request()

RealSubject

+Request()

Design Patterns Cheat Sheet

Behavioral Patterns
Chain of Responsibility

Avoids coupling the sender of a request to its receiver by giving more than one object
a chance to handle the request

ConcreteHandlerl
: Handler +HandleRequest()
Client
+HandleRequest() ConcreteHandler2
+HandleRequest()
Command

Encapsulates a request as an object, thereby letting you parameterize clients with
different requests, queue or log requests, and support undoable operations

Client >|| Invoker

executes \:/ ?

Receiver ConcreteCommand Command
+Action() +Execute() +Execute()
Interpreter

Given a language, defines a representation for its grammar along with an interpreter
that uses the representation to interpret sentences in the language

Context |

TerminalExpression

AbstractExpression *Interpret(context)

pntErprEtConteXt NonterminalExpression

I—<> +Interpret(context)

Iterator

Given a language, defines a representation for its grammar along with an interpreter
that uses the representation to interpret sentences in the language

Aggregate ConcreteAggregate

+Createlterator() +Createlterator()

Client]
)
Iterator A
- Concretelterator
+First()
+Next() +Next()
+Currentltem()
Mediator

Defines an object that encapsulates how a set of objects interact

|<I—| ConcreteMediator

ConcreteColleaguel

Mediator

Colleague

ConcreteColleague2

Memento

Without violating encapsulation, capture and externalize an object's internal state so
that the object can be restored to this state later

Originator Memento
-state -state
. < Caretaker_]
+SetMemento(memento) +GetState()
+CreateMemento() +SetState()

Behavioral Patterns (cont’'d)

Observer
|

Defines a one-to-many dependency between objects so that when one object changes
state all its dependents are notified and updated automatically

Subject
Ob
+Attach(observer) server
+Detach(observer) +Update()

+Notify()
i |

ConcreteSubject ConcreteObserver

-subjectState l<— -observerState

+HandleRequest() +Update()

State
L]

Allows an object to alter its behavior when its internal state changes

Context
+Request()
$ ConcreteStateA
State +Handle()
fhandle) ConcreteStateB
+Handle()
Strategy

Defines a family of algorithms, encapsulate each one, and make them interchangeable

Context

+Contextinterface()

? StrategyA

Strategy +Algorithminterface()

+Algorithminterface()

StrategyB
+Algorithminterface()

TemplateMethod

Defines the skeleton of an algorithm in an operation, deferring some steps to
subclasses

AbstractClass

+TemplateMethod()
+PrimitiveOperation1()
+PrimitiveOperation2()

ConcreteClass

<— +PrimitiveOperation1()
+PrimitiveOperation2()

TemplateMethod

Represents an operation to be performed on the elements of an object structure

Visitor ConcreteVisitor

+VisitElementA(element) K— +VisitElementA(element)
+VisitElementB(element) +VisitElementB(element)

Client

ConcreteElementA

Element +Accept(visitor)

+Accept(visitor)

ConcreteElementB

+Accept(visitor)

